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Multiscale Modeling for Turbulence Simulation in
Complex Geometries

Srinivas Ramakrishnén
Rice University
Houston, TX, 77005-1892

S. Scott Collig
Sandia National Laboratories*
Albuquerque, NM 87185-1110

The discontinuous Galerkin (DG) method provides unique cagpbilities that can be utilized to improve accu-
racy and efficiency in simulating turbulent flows in complex gometries. This paper continues our research on
DG methods for turbulent flows by considering turbulent chamel flow at low to moderate Reynolds numbers
(Re- = 100 to 395). Itis shown that DG solutions can successfully predict lovorder statistics with fewer degrees
of freedom than traditional numerical methods. This reducion is achieved by utilizing local hp-refinement such
that the computational grid is refined simultaneously in allthree spatial coordinates with decreasing distance
from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through
integrals of the numerical fluxes and we explore the use of sh¢'weak” wall-boundary conditions for turbulent
channel flow. Finally, preliminary results are presented ughg DG with the variational multiscale (VMS) method
for large eddy simulation that highlight the synergism of this combination.

Introduction complex geometries. This paper takes a first step in apply-

We continue to explore the use of discontinuous Galerki"d DG to turbulent flows by considering low-Reynolds-
(DG) for simulating compressible turbulent flows and the"Umber DNS of compressible turbulent channel flow. We
current paper builds upon several recent publications thaote; before proceeding, that there is considerable ongo-
document our progress to date [1-3]. The focus of thé"d research on DG methods (see Cockburn et al. 8) and
current paper is to explore several features of the DA€ have greatly b_eneflt_ed from the work of Cockburn_ and
method including locahp-refinement and weak boundary co-workers, Karniadakis and co-workers, and Bassi and
condition enforcement as a potential strategy for “waII-Reb?y- . . . _
modeling.” In addition, we present preliminary results for 1 hiS paper begins with the formulation and implemen-

the combination of DG and the variation multiscale (vMs) tation of DG for turbulence simulation including a brief
method for large eddy simulation (LES) [4-6] — a syner- discussion of LES based the VMS method [4-6]. We be-

gistic combination that is promising for LES in complex lieve that the combination of DG and VMS is particularly
geometries. attractive for LES of turbulent flows in complex geome-

Discontinuous Galerkin can be thought of as a hybrid Oftries. [1, 2] The locahp-refinement capability of DG is
finite-volume and finite-element methods that has a numbe"?‘ppllecj to fuIIy-dequoped turbulent channel flow and re-
of potential advantages including: high-order accuracy or‘Fu“S are presented in a turbulence Reynolds number range

unstructured meshes, lodal-refinement, weak imposition ©f Ré- = 100 to 395 (the highest Reynolds number un-

of boundary conditions, local conservation, and orthogionaSt€ady turbulent flow simulated to-date with DG methods).

hierarchical bases that support multiscale turbulence-mod "eliminary results using the combiqed DG/VMS method
eling [L, 4, 6]. The interested reader should consult thefor LES are also presented. We continue to explore the ad-

review of Cockburn [7] and Cockburn et al. [8] for a recent vantages of weak boundary condition enforcement and its

update on the status of discontinuous Galerkin. Since thBotential for wall-modeling by implementing a boundary
DG method is ideally suited for hyperbolic or nearly hyper- penalty method that allows for control of the size of solu-

bolic systems, DG may be a particularly attractive method!on lumps atwall boundaries. Finally, the paper concludes
for high-Reynolds-numbeompressible turbulent flows in with a summary of our findings and a discussion of future

work.
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O=0Q;+ QQ summing over all elements yields
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Fig. 1 Schematic of DGM discretization _ XN: WTS ds @)
whereU = {p, pu, pe}* is the vector of conserved vari- e=1¢

ables,p is the fluid densityu is the fluid velocity vector,
ande is the total energy per unit mass. The inviscid and vis-where thelU+ andU ~ states are defined in Fig. 1. For an
cous flux vectors in théth coordinate direction arf;(U)  element edge on the physical boundafy, Ut = Us,..
andF}(U), andS is a source term. Equation (1a) is solved Likewise, for inter-element boundarie&™ comes from
subject to appropriate boundary conditions which must behe neighboring element. Thus, all interface and boundary
specified for each problem of interest; a state equatio, succonditions are set through the numerical fluxes. Rewriting
as the ideal gas equation; and constitutive laws that defing@t) in a more compact notation, the discontinuous Galerkin
fluid properties such as viscosity and thermal conductivimethod is:

ity as functions of the conserved variables. Due to space )

limitations, we do not explicitly define the flux vectors, GvenUo = Uo(z), fort € (0,T), find U(x,t) €
state equation, or constitutive relations, but insteadrref ¥(Pn) X H'(0,T) such thaly (z,0) = Uy(z) and

the reader to standard texts (see, e.g., Hirsch [9]).

The fixed spatial domain for the problem is denoted by
Q, which is an open, connected, bounded subseRdf
with boundaryof2. Let Py, be a partition of the domaift
into N subdomains$2, where

Bpe(W,U) = (W,S) VW eV(Py), (5)

whereV(P,) is a so-called broken space [10]. W{(P)
is restricted to a space of continuous functions, then one
recovers the classical continuous Galerkin approximation
N upon using the consistency properties of the numerical
O=[JQ and QNQy=0 for e#f. (2) fluxes[7].
e=1 While there are a wide range of choices for both the in-

Starting from the strona form of the com ressibleviscid and viscous numerical fluxes [7], we have chosen to
9 9 P use a Lax—Friedrichs method for the Euler flux

Navier—Stokes equations (1a), we consider a single subdo-

main, 2., multiply by a weighting functio¥ which is ~ S 1 _ N
continuous irf)., and integrate the flux terms by parts F,UUT) = 9 (Fn(U7)+ Fn(UT))
1
-\ (U —U" 6
/(WTU,t+W§(Ff —Fi)) dx + + 2 [ ( ﬂ ©6)
Qe where),, is the maximum, in absolute value, of the eigen-
/ W7 (F, — F") ds /WTSdS (3)  Values of the Euler Jacobiat, = 9F,/0U.
" For the numerical viscous flux, we use the method of

092 e Bassi and Rebay [11]. First, a “jump savvy” gradient of the

whereF,, = F;n;. If the solution were assumed to be stateo; ~ U ; is computed by solving
continuous and this equation were summed over all the

elements inP;, then the flux terms would telescope to o T N T

the boundanp$ and we would obtain the standard con- Z /V o;de = _Z /ijUd”’
tinuous Galerkin form of the compressible Navier—Stokes =, =la,
equations. However, in discontinuous Galerkin, one in- N N

stead allows the solution and weighting functions to be Z / VTUn;jds YV € V(Py) (7)
discontinuous across element interfaces (see Fig. 1) and e=1 50,

the solutions on each element are coupled using appropri-

ate numerical fluxes for both the inviscid fl, (U) —  for each directionj, where

F,(U~,U") and the viscous flux,F!(U,U ;) —

F,(U~,U;,U",UY). Introducing numerical fluxes and U= (U +U"). 8)
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The Bassi and Rebay [11] viscous flux is then computedhew paradigm for LES, called the Variational Multi-Scale

using (VMS) method, was introduced by Hughes et al. [4] and
oo recast in a form more consistent with traditional turbukenc
F,U ,0;,U",0])= modeling by Collis [6]. This method bypasses several of
% (FZ(U*’ o)+ F(U", aj)) ) (9) thelimitations of filter-based LES, such as filter/derivati

commutation and filter design on inhomogeneous grids,
While this method is known to be only “weakly stable” py using variational projection to effect scale separation
[12], we have not encountered any difficulties for the prob-thereby making extension to complex geometries easier.
lems considered here and this method has been used suc-The VMS methodology, involves priori partitioning of
cessfully in prior studies [11]. the solutionl7 = U +U + U whereU are the large scales,

In setting boundary conditions weakly through the nu-g7 are the small scales, arld are the unresolved scales
merical fluxes, one must construct a stat®,., that en-  [6]. Subsequently, equations for each scale range can be
forces the appropriate boundary conditions and Atkins [13ljerived and the influence of the unresolved scales (through
provides a discussion of the important issues involved inReynolds and cross stresses) on the resolved scales can be
selecting ... For the Navier—Stokes calculations reportedisolated (see Collis [6] for details). Thereafter, a suthgri
here, we use the following approach at the isothermal walkcale model confined to act just on the small scales, such
boundaries. We evaluate,. separately for the convec- as a constant coefficient Smagorinsky model, is introduced
tive and viscous fluxes. Lefi = (u"ny, — v™nz)ny,  to model the influence of the unresolved scales on the re-
g2 = (v ng —u ny)ng, andgs = (w ny —u n:)ns  solved scales. This approach to modeling, wheyeex-
then the reconstructed state at a wall for the convective ﬂU)ﬁ)Iicit model is applied on the large scales, is believed to be
is responsible for the success of VMS, when using a constant
- coefficient Smagorinsky model on the small scales, in both

P o —_
pq equilibrium and non-equilibrium flows [5, 15, 16].
U, = P~ g . (10) The discontinuous Galerkin method permits the use of
P~ g unstructured grids with high-order, hierarchical represe
pp=e +0.5p" (42 + a3 + ¢2) tations used on each element that provides a convenient

setting for VMS turbulence modeling. This makes the

This state enforces the no-penetration condition which isombination of DG and VMS particularly attractive for tur-
appropriate for both inviscid and viscous calculations: Fo pulence simulations in complex geometries [1].
the viscous flux, the no-slip condition is enforced using

Weak boundary conditions

p() Before presenting turbulence simulation results, we first
0 (11)  revisit the discussion of Collis [2] to motivate our intetres
0 in weak boundary condition enforcement. Using discon-
p~Tw/(Y(y — 1)M?) tinuous Galerkin methods, Dirichlet boundary conditions
are most naturally enforced weakly through the numeri-
whereT, is the prescribed wall temperatureis the ratio ¢ fluxes. While similar “weak” boundary conditions have
of specific heats, anll is the reference Mach number.  peen used for far-field nonreflecting boundary conditions in
To explore the effects of the weak wall-boundary en-finjte-difference discretizations (see e.g. Poinsot anle Le
forcement described above, we also consider a boundal[;w]’ Thompson [18]) the use of weak boundary condi-
penalty method that provides a means to control the magions for wall-type boundary conditions is less common,
nitude of jumps at the boundaries. We modify the Bassi—sgpecially in the flow physics community. In the compu-
Rebay viscous flux (9) at the physical walls suchthat  tational mechanics and applied mathematics communities
FlU- o7 Ut o) = there has been prior work on weak enforcement of Dirich-
n 0 P let boundary conditions in the continuous Galerkin method
s (Fo(U o)+ F, (U, 0l)) + by Babuska [19] and Nitsche [20] and these methods are
c (U* _ U*) (12) related to discontinuous Galerkin [12]. Likewise, the re-
cent work of Layton [21] provides theoretical consider-
wheree > 0 is a penalty factor. When the penalty factor ations on weakly enforced Dirichlet boundary conditions
is set to zero the Bassi-Rebay weak wall-boundary condifor the Stokes equation that are motivated by observations
tion enforcement presented above is recovered. With thef improved solution quality compared to hard Dirichlet
penalty parameter set to a large value, a hard wall-boundatyoundary conditions.

ch =

condition is approached. While one can always set “hard” Dirichlet boundary con-
L ) ditions in any discretization (including DG), it is intetieg
Variational Multiscale Method for LES to compare the performance of hard boundary conditions

One of the principal challenges in using filter-based LESwith weak enforcement through the numerical fluxes as de-
is the extension to complex geometries [14]. Recently, acribed above. As an example, consider the simple steady,
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Fig. 2 Weak (a) and hard (b) Dirichlet boundary conditions
for an advection-diffusion problem

forced advection-diffusion problem

Uy =1+ VU zp

(13)

with boundary conditions:(0) u(1) = 0 and diffu-
sivity v = 0.01. Figure 2 shows results computed using
a discontinuous Galerkin discretization with two= 6

elements using both hard and weak enforcement of th
Dirichlet boundary conditions. This discretization was in
tentionally selected to be coarse in order to highlight th
differences between the two solutions. One clearly se

that oscillations are more pronounced when a hard bound-,

ary condition is used. Conversely, while oscillations are
less in the weak case, the boundary condition on the rig
side (inside the boundary layer) is only approximately sat
isfied;«(1) = 0.374 instead of zero. Table 1 compares the
error in the solution in thd .., Ly, and H; norms. Con-
sistent with the graphical results, the solution with weak
Dirichlet boundary conditions has four times less error in
Lo and is also better idf;. However, the solution with
weak boundary conditions is slightly worselin, and this

e

.

h

BC | L Ly H
Weak | 0.374 0.0198 2.00
Hard | 0.251 0.0850 3.35

Table 1 Errors in advection diffusion solutions

gained from weak enforcement of Dirichlet boundary con-
ditions that are naturally obtained from a DG discretizatio
Philosophically speaking, one should not enforce bound-
ary conditions any more accurately then the error in the
interior solution. Doing so tends to over-constrain the in-
terior solution, typically leading to oscillations as seen
figure 2(b). By weakly enforcing boundary conditions one
obtains solutions that still feel the influence of the bougda
through the numerical fluxes, but in a manner that is con-
sistent with the accuracy of the interior solution, leading
improved solutions away from the wall. Given the impor-
tance of wall boundary conditions for near-wall turbulence
we will pay particular attention to the success of the weak
boundary condition throughout the following discussion.

Numerical Results

We now consider fully-developed turbulent flow in a
plane channel with coordinates= x; in the streamwise
direction,y = x5 in the wall-normal direction, and = 3
in the spanwise direction. The flow is assumed to be peri-
odic in the streamwise and spanwise directions where the
box size is selected so that the turbulence is adequately
decorrelated in both directions.

As a first step toward utilizing DG for turbulent flows,
we have performed simulations Be, = 100, 180, and
395, all with a centerline Mach number df. = 0.3 so
that comparisons can be made directly to prior incompress-
ible results (see e.g., Refs. [22, 23]). Following Coleman
et al. [24], we use a cold, isothermal wall so that internal
energy created by molecular dissipation is removed from
the domain via heat transfer across the walls, allowing a
statistically steady state to be achieved. The bulk mass
flow is held constant by the addition of an-momentum
source on the right-hand side of (1a). We note in passing,
that local, weak boundary-condition enforcement must be

%xplicitly constructed to ensure global conservation ahid a

ditional details will appear in a future publication.

The computational domain iglr, 2, 47/3) for Re, =

00 and 180, while forRe, = 395 a smaller domain of
m,2,2m/3) is used. Exploiting the flexibility of the DG
method, we use bothh and p refinement to more effi-
éiently resolve flow features near the wall. In particular,

two wall-normal distributions of elements are investighate
a uniform mesh and a stretched mesh. For the stretched
mesh, the grid points are given by

_ tanh(cs(2j /Ny — 1))

1,..
tanh cg

+1, j=0,1,...,N,

(14)

Yj

is directly due to the error in the boundary value. Dis-where N, is the number of elements in the wall-normal

carding a small region near = 1, the weak solution
is also better inL,,. While these results are certainly

direction andt; is the stretching factor in the rangers <
cs < 2.0. Unless explicitly stated, we use the stretched

not conclusive, they are indicative of the potential benefitmesh.
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===t ; doubled (see Table 2) when going frgm= 3 top = 4. It

H is for this reason (spectral convergence) that there is-a dra
P matic improvement in the solution quality for an increase
of just one polynomial order.

Next, we study the effects dgf-refinement by using a
8 x 8 x 8 mesh withp = 3 (see Table 2). A comparison
LI O LD O 8 H of meanflow and rms profiles from this simulation with re-
- 1 ] sults from thed x 4 x 8 mesh usingy = 4 is presented
el = e e e == EriEE == == siieee in Fig. 5. While the meanflow predictions for both simula-
tions are similar, there is a noticeable improvement in rms
Fig. 3 Cross-stream ¢—y) quadrature grid for an 8 x 8 x 8 profiles for the higher resolutioh-mesh. This improve-
stretched mesh withp = {5,5, 4, 3}. ment can be attributed, in large part, to improved resatutio
in the wall-normal direction. To substantiate this claim,
o ) ! we present results for a uniform wall-normal mesh for the
mesh, we also utilize local-refinement by reducing the : . . .
sames8 x 8 x 8 resolution, again using = 3. Figure 6

polynomial order away from the wall. Figure 3 shows a :
. ; compares meanflow and rms profiles for the stretched and
typical crossflow quadrature grid for the stretched mesh

: : N . uniform meshes. The meanflow profile indicates a signifi-
using 8 elements in the wall-normal direction. Moving o :
cant overprediction of the wall shear-stress for the unifor
from the bottom wall to the top wall, the element order S ) .
L L mesh. Likewise, the rms profiles for the uniform mesh are
varies like: {5, 5, 4, 3, 3, 4, 5, bresulting in a total of . . . ;
e not in good agreement with DNS. The difference in the
79,488 degrees of freedom. Note that the flexibility of . . L .
. : . wall-normal resolution results in a dramatic difference in
the DG method makes it possible to coarsen simultane;

) . e the level of slip in the streamwise velocity at the wall —
ously inall three coordinate directions as one moves away4o/ and 0.07% for the unstretched and stretched meshes
from the wall. In all cases, we use third-order TVD-RK ~’* 0

time advancement witth¢ = 0.0001. This time step is \r/\?slllo-i(z)tr“r{r?.:\)lﬁre-srglifiirrzsult)s ||r;d|sc?r':etht2e lj:;ﬁ::l&(\)lfrsocl)leu:[hat
a factor of 10 smaller than that typically used in our in- Yuw) PIRY q Y

. : . thons. In particular, very coarse meshes in the wall-normal

compressible code [25] because the incompressible co le ection. i " . L
" S irection, i.e. Ay, > 4, result in poor low-order statistics

treats wall-normal viscous terms implicitly. We are cur-

+
rently enhancing our DG code to support implicit time- (see Table 2). We note, that the valuesAj, reported

. here are based on the distance of the first collocation point
advancement. We also note that computing turbulence : .
off the wall — the first element size would be roughly

statistics from a DG solution requires a substantial Coding5 . . . :
times greater. Given this, the wall-normal resolutions
effort, so that currently we compute only mean and rms

quantities. Higher-order statistics and spectra will be-pr r(_aported here_(e\_/(_an the highest resolution cases we con-
sented in future publications. sidered) are significantly coarser than those typicallduse

in LES and DNS of wall-bounded turbulence. It appears
Resolution Study that the weak wall-boundary condition enforcement allows

We begin withRe, = 100 and preliminary results at this for significant reductions in wall-normal resolution (asdo
Reynolds number were previously presented in Refs. [2, 3]2SAy,;, < 4) without degrading overall solution quality. In
Here, we present a more thorough resolution study at thi§SSence, the viscous sublayer is partially representeteby t

Reynolds number as well as resultsRat = 180 and395, jump in quantities as the wall, and we term this approach
below. “boundary layer capturing.” The improved results at low

We start withRe, = 100 results obtained usingax4x8  resolutions for the channel flow are consistent with the sim-

mesh with a uniform polynomial order= 3. The mean- ple advection-diffusion example discussed above.

flow and rms profiles for this case, seen in Fig. 4, are in We have also recently reported result®et = 100 that
poor agreement with the reference DNS. However, increagdse a variable polynomial-order distribution in the wall-
ing the polynomial order on the same meslpte 4 leads normal direction [2, 3]. Due to space limitations, we do
to a significant improvement in the both the meanflow andnot revisit those results here, but instead note that they ar
rms profiles (see Fig. 4). A summary of the simulation pa-consistent with the trends observed here. Variakteder
rameters for the resolution studyRe. = 100 can be found cases will be presented fRe, = 180 and395.

in Table 2. It is typical of DG solutions with weak wall-  Given the well-known importance of spanwise resolu-
boundary condition enforcement that the solution slips ation in wall-bounded turbulent flows [22, 23], we now focus
the wall. The amount of slip is related to the resolution usedattention on the spanwise direction. The simulations dis-
in the simulation. Table 2 records a significant decrease ircussed so far used 8 elements in the spanwise direction and
streamwise slip velocity from.85% to 0.27% associated good solutions were obtained with= 3, given sufficient
with an increase in polynomial order from= 3 to 4. Itis  wall-normal resolution. With 8 elements across the chan-
important to note that changing the polynomial order uni-nel, each element is approximately 50 wall-units in width,
formly leads to refinement iall three coordinate directions which roughly corresponds to half the typical streak spac-
simultaneously so that the degrees of freedom (d.o.f.) isng. Using this element size, we have obtained good mean

In addition to localh-refinement using the stretched
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P | N, x Ny x N, Ayl Azl Azl Slip(%) d.o.f
3 4x4x8 435 314 523 3.85 8,192
4 4x4x8 296 314 523 0.27 16,000
3 8x8x8 140 157 52.3 0.07 32,768
3* 8x8x8 469 157 523 4.02 32,768

Table 2 Simulation parameters forRe, = 100 with domain size @, 2, 47 /3) on the stretched mesh. The: denotes a uniform
wall-normal mesh.

and rms profiles fop > 3. Forp < 3, the solutions are 25
similar to those obtained with traditional low-order upain
finite-difference and finite-volume methods were numeri-

cal dissipation tends to suppress turbulent fluctuatioes. R 20 i
call that we use the Lax—Friedrichs flux which is known to
be highly dissipative so that these observations may altere .| |

if a different numerical flux is used and this is an interest-
ing area for future research. However, the key point is tha E
for elements withAz} < 50, p > 3 results in solutions 10t
in good agreement with DNS without indication of adverse
effects due to numerical dissipation.

To further explore the influence of spanwise element
size, we also performed simulations on a codrse4 x 4
mesh usingp = 3. In this case, the spanwise element
size is approximately 100 wall-units which indicates that 10
both a low- and high-speed streak are contained withir.
one element. Consequently, the elements are larger the 3
the near-wall vortices and our experience with DG in two- ,
dimensional simulations indicates that high polynomial or 2.5¢ ; S 8
ders {p > 7) are required to adequately resolve a vortex NN
within a single element. Thus, not surprisingly, this sim- oL NN i
ulation was non-linearly unstable due to inadequate repre jé ‘ S~
sentation of the viscous dissipation scales. Tl ! e |

A summary of the relative resolutions, in wall units, for g,m ' ;: SR
all the simulations aRe. = 100 is presented in Table 2. & |/ =3
Overall, excellent low-order statistics are obtained ggin 1 o~ 7
uniform polynomial ordep = 3 on an8 x 8 x 8 mesh S Tty ey~
that gives a streamwisé\;}) and spanwise/z;) extent (] e
for each element of approximately60 and 50, respec- / “ -
tively. Importantly, Ayt > 1 for all the cases considered o ‘ ‘ ‘ ‘ ‘ ‘ ‘
so far, a value greater than normally used in LES [26, 27]. °© 10 20 30 40 S0 60 70 80 90
As discussed above, the weak wall-boundary condition en-
forcementis responsible for mitigating the wall-norma&tre Fig. 4 Comparison of mean and rms velocity profiles in wall
olution requirements and we explore this in more detail inunits at Re. = 100 for the stretched4 x 4 x 8 mesh using dif-

our discussion of the boundary penalty method. ferent polynomial orders: incompressible DNS;----

We now extend our resolution study to higher ReynoldsPC P =3 — —DGp =4, law of the wall.

numbers. Table 3 presents the simulations parameters for

Re,. = 180. We begin with &8 x 8 x 16 mesh using a uni- Also shown in Fig. 7 are results from two additional sim-
form polynomial ordep = 3 that gives aAz;, ~ 280, ulations: p = 4 on an8 x 8 x 16 mesh p-refinement)
Ayl =~ 2.5, and Az} ~ 50 (see Table 3). Based on andp = 3 on al6 x 16 x 16 mesh f-refinement). The
our findings atlRe, = 100, we might expect that the wall- relative resolutions shown in Table 3 for these simulations
normal resolution is too low, and while the mean and rmscorrespond well with their counterpartsRe, = 100 (see
profiles in Fig. 7 show reasonable agreement with DNSTable 2). Similar to the results Re, = 100, the mean and
[23], there is clearly a slight underprediction of wall shea rms profiles for the highek-resolution mesh withp = 3
stress. Overall, the results are slightly better than thosare in better agreement with DNS than the< 8 x 16
obtained for a similar relative resolution Be, = 100, mesh withp = 4. However, both are in reasonable agree-
likely due to the fact that we usBe, = 180 instead of ment with the DNS [23] and the total number of degrees
Re. = 200, although the resolution was exactly doubled in of freedom required for thé-refinement is twice that for
each coordinate direction. p-refinement.

10
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Fig. 5 Comparison of mean and rms velocity profiles in wall FiQ' 6 Comparison OT mearn af‘d rms velocity profiles in.waII
units for Re, — 100 on the stretched mesh with differenth units for Re, = 100 with and without wall-normal stretching
on a8 x 8 x 8 mesh using uniform polynomial-order p =

and p resolutions: incompressible DNS;—-— DG . . ;
with p = 4 and 4 x 4 x 8 mesh: ———— DG with p = 3 3 incompressible DNS;—-— uniform mesh; ----
and 8 x 8 x 8 meshr--.--.- law of the wall stretched mesh;------- law of the wall.

As a means to further improve the solution without re- this may not be an optimal distribution of polynomial order,
sorting to the cost associated with a fineimesh, we it only uses a little over one half the total degrees of free-

exploit the flexibility of DG to allow localp-refinement. dom as the high resolution-mesh and the solution is of
Retaining the3 x 8 x 16 mesh, we now use a polynomial- comparable quality. Above all, these results demonstrate
order distribution in the wall-normal direction (ﬁ — the fleXIblllty inherent in DG discretizations that can PoO-

{5,5,4,3,3,4,5,5} (see Table 3). Figure 8 compares re- tentially be utilized to efficiently improve solution quidi
sults from this simulation with the two higher resolution This is one of the features that makes DG attractive for tur-
simulations considered previously:= 4 onthes x 8 x 16  bulence simulations and we expect to make even greater

mesh ang = 3 on thel6 x 16 x 16 mesh (see Table 3). Use of this feature for free-shear flows.

Low-order statistics from the variable polynomial distrib Finally, we present preliminary results Re, = 395
tion simulation are similar to the = 4 simulation on the computed on g2, 2,27/3) domain. The mesh is cho-
same mesh. However, in the near-wall region where thesen so that the relative resolution is comparable to the
variablep-order simulation usgs = 5, the agreement with  simulations atRe, = 100 and Re, = 180 that pro-
the higher resolutiorh-mesh (and DNS) is better (this is duced reasonable low-order statisticAx,!, ~ 300 and
most clearly seen in the rms profiles in Fig. 7. The core ofAz, ~ 50. A summary of the simulation parameters
the channel, for the variable polynomial case, actuallgusefor Re, = 395 is given in Table 4. Two distributions of
a lower polynomial ordery = 3) than the constant = 4 polynomial order are considered: a uniform polynomial
simulation and this does not have an adverse affect on therder withp = 4 and a variable polynomial distribution
rest of the domain. It is important to point out that while with p = {6,6,5,4, 4,5, 6,6} in the wall-normal direction.
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D | N, x Ny x N, Ayl Azl Azl Slip (%) d.o.f

3 8§ x 8x16 252 283 471 0.30 65,536
4 8§ x 8x16 171 283 471 0.31 128,000
{5,5,4,3} 8 x 8x16 124 283 471 0.12 158,976
3 16x16 x16 1.01 141 471 0.04 262,144

Table 3 Simulation parameters forRe, = 180 with domain size @, 2, 47 /3) on the stretched mesh.

25 25

% 20 40 60 8 100 120 140 160 180 % 20 40 60 8 100 120 140 160 180
y' y'
Fig. 7 Comparison of mean and rms velocity profilesinwall  Fig. 8 Comparison of mean and rms velocity profiles in
units for Re; = 180 on the stretched mesh for differenth and wall units for Re, = 180 on the stretched mesh for dif-
p: DNS [23]; —-— DG with 8 x 8 x 16 mesh using  ferent h and/or p. —— DNS [23]; -------- DG with 8 x
p =3 DG with 8 x 8 x 16 mesh usingp = 4; ——-- 8 x 16 usingp = 4; —-— DG with 8 x 8 x 16 using
DG with 16 x 16 x 16 mesh usingp = 3. p = 1{5,5,4,3,3,4,5,5}; ————- DG with 16 x 16 x 16 us-
ingp = 3.

Mean profiles from both simulations, shown in Fig. 9, are

in good agreement with DNS [23]. Overall, rms profiles, In summary, our results demonstrate that coherent struc-
shown in Fig. 9, are also in good agreement with the DNStures in the near-wall region can be used to guide the se-
However, the variable polynomial simulation shows signif- lection of the mesh sizé,. As a useful guideline for DG
icantly better agreement with DNS in the near-wall region,discretizations of wall-bounded turbulence, we suggest th
wherep = 6 instead of4. However, fory™ > 200 the rms  a streamwise resolution adkz, =~ 300 and a spanwise
profiles are very similar since both simulations pse- 4 resolution ofAz;! ~ 50 be used withp > 3. In the wall-

in the channel core. Finally, we note that the local peaksiormal direction, we recommend that the first collocation
visible in the rms plot in Fig. 9 are associated with inter- point off the wall be such thahy;} < 3 or, that the slip in
element boundaries and are likely a result of the techniquéhe streamwise velocity at the wall be less than%. We
used to compute second-order statistics — we are currentlggain note, that this wall-normal resolution is signifidant
investigating this. larger than that commonly used in turbulence simulations
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25 ‘ ‘ ‘ ‘ nel simulations at this Reynolds nhumber [27]. In the VMS
approach, a 50-50 partition in scales is used with the small-
small variant of the Smagorinsky model used on the small
scales [4].

This preliminary study use thex 8 x 8 stretched mesh
] with uniform polynomial orderp = 3. Mean and rms
profiles for all three simulations are shown in Fig. 10. As
expected, the Smagorinsky model has excessive dissipation
8 leading to a significant overprediction of the wall shear-
stress as well as@,.,,s peak that is shifted away from the
wall, and significant underprediction ef.,,,s and w,.,,s.
Interestingly, the no-model and VMS solutions appear to
be almost identical indicating that at this Reynolds number
and resolution, there is little need for an explicit subgrid
10° model. However, this does confirm one potential advan-
tage of VMS: if the large scales are sufficient to resolve the
important dynamics, the effect of the model on these scales
is minimal for an appropriately selected partition [16].

Further investigation is required to understand the role of
subgrid-scale models in our DG implementation, especially
for higher Reynolds number and lower relative resolutions.

20r

151

101

Boundary Penalty Method

We now consider the effect of adding a boundary penalty
term to our weak wall-boundary condition as described by
Equation (12). In particular, we focus on simulations with
low wall-normal resolution Ay, > 4) that showed poor
agreement with DNS (see Figs. 4 and 6). Table 5 summa-
rizes the simulation parameters and, for all cases consid-
ered here, the penalty facter= 100, which was selected

%% 50 100 150 200 250 300 350 such that ~ O(1/h,,) whereh,, is the wall-normal (ele-
y ment) mesh spacing at the wall.

As discussed earlier, low wall-normal resolution can lead
units for Re; = 395 on 8 x 8 x 18 stretched mesh with different 0 Slgr_nflcant slip at the W.a” when using W_eak boundary
polynomial orders: incompressible DNS [23];---~- corldltlon enforcem_ent. Wl.th thex 8 x 8 unlfprm mesh
DG usingp = {6,6,5,4}; —-— DG usingp = 4; -+------ law usingp = 3 there is4% slip of the streamW|_se velocny_
of the wall. at the wall. Figure 11 compares the drag history for this

simulation with results from the stretched mesh using the
— both DNS and LES (see e.g., Refs. [23, 26, 28]) and th&éameh andp. The uniform mesh leads to large oscillations
success of our approach appears to be related to the useipfthe instantaneous shear-stress and an overprediction of

Fig. 9 Comparison of mean and rms velocity profiles in wall

weak enforcement of the no-slip boundary condition. the average wall shear-stress. Consequently, the meanflow
. . and rms profiles for this simulation, shown in Fig. 12, are
Subgrid-Scale Modeling not in good agreement with DNS.
So far, all of the results presented in this papemdb Introducing the penalty decreases the slip at the wall (see

use a subgrid-scale model. As such, they may be called ndable 5) resulting in improved drag prediction (see Fig. 11)
model LES or coarse grid DNS. In this section, we presenSubsequently, the mean profile prediction forghe 8 x 8
some preliminary results for the application of explicit uniform mesh withp = 3 and the boundary penalty, seen
subgrid-scale models (i.e. LES) within our DG formula- in Fig. 12, is in good agreement with DNS. Likewise, the
tion. For expediency, all results are fee, = 100 and, ob-  rms profiles are also improved, although, the peakin,
viously, additional research is required at higher Reysiold is shifted away from the wall.

numbers. We consider three approaches: no-model, a con- Figure 13 shows a similar comparison, with and with-
stant coefficient Smagorinsky model with Van Driest wall out boundary penalty (see Table 5) for the stretched wall-
damping, and a constant coefficient Smagorinsky varianhormal mesh using a lo-resolution mesh4( x 4 x 8)

of the VMS model. The Smagorinsky coefficientig for ~ with p = 3. Clearly, the mean profile is improved, although
both VMS and full-scale Smagorinsky models. The lengththe average wall-shear stress is now slightly overpredicte
scale, A, used in computing the eddy viscosity is basedLikewise, the rms profiles are also improved, although not
on a uniform323 mesh commonly used for turbulent chan- to the same degree as for the previous mesh.
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P |Nz><Ny><NZ Ayl

Azt Azf o Slip(%)  d.of

4 8 x 8 x 18
{6,6,5,4} 8 x 8 x 18

2.82
1.56

310 46.0 0.78 144,000
310 46.0 0.0059 295,776

Table 4 Simulation parameters forRe, = 395 with domain size @, 2, 27 /3) on the stretched mesh.

P | N, x Ny x N, Ayl Slip(%) d.o.f €
3 4x4x%x8 4.69 3.80 8,192 0
3 4x4x8 4.07 0.004 8,192 100
3 8x8x38 4.69 4.02 32,768 O
3 8x8x38 4.27 0.056 32,768 100
Table 5 Simulation parameters for Re; = 100 with domain size (@, 2, 47/3) on the uniform mesh with boundary penalty
method.
25
20 1

Fig. 10 Comparison of mean and rms velocity profiles in wall
units for Re, = 100 on 8 x 8 x 8 mesh usingp = 3 with various

turbulence models:
(no-model); —-— DG (VMS); -------- DG (Smagorinsky).

incompressible DNS;-—--- DG

0 5 10 15 20 25 30
time, t

Fig. 11  Comparison of skin friction (r,,) the boundary
penalty method using8 x 8 x 8 uniform wall-normal direction
mesh withp = 3: DG using8 x 8 x 8 stretched mesh
with p = 3 (reference);---- no penalty; —-— penalty.

In summary, weak boundary condition enforcement for
the no-slip boundary condition is advantageous in reduc-
ing near-wall resolution requirements while still leadiog
accurate mean and rms profiles. However, for very coarse
wall-normal meshe&\y > 4, it appears to be advanta-
geous to alter the viscous numerical flux by including a
term that penalizes the jump in the solution at the boundary.
It may be possible to formulate a so-called “wall-model” as
a modified numerical flux at wall-boundaries and this is a
research direction that we are pursuing.

Conclusions

We have shown that discontinuous Galerkin (DG)
discretizations have extensive features (i.e. loaal
refinement, weak boundary condition enforcement) that
can be utilized for turbulence simulation. We have per-
formed a resolution study that relates the selection of the
element mesh size with near-wall flow-structures in wall-
bounded turbulent flows. For moderate wall-normal reso-
lutions, the use of a weak boundary condition (based on the
Bassi—Rebay numerical flux) at the wall produces results
away from the wall that are in good agreement with DNS.
However, at very low resolutions a penalty term of the jump
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Fig. 12 Comparison of mean and rms velocity profiles inwall ~ Fig. 13 Comparison of mean and rms velocity profiles in wall
units for Re; = 100 on 8 x 8 x 8 mesh with an uniform units for Re, = 100 on 4 x 4 x 8 mesh usingp = 3 with various

wall normal mesh usingp = 3 with various boundary con-  boundary conditions: incompressible DNS;---- DG
ditions: incompressible DNS---- DG with £ = 0; with ¢ = 0 (weak boundary enforcement);—-— DG with
—-— DG with £ = 100; -------- law of the wall. € = 100; -------- law of the wall.
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